Exercises for 1.6

In each case balance the chemical reaction.

Exercise 1.6.1 $CH_4 + O_2 \rightarrow CO_2 + H_2O$. This is the **Exercise 1.6.3** $CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$. This burning of methane CH₄.

Exercise 1.6.2 $NH_3 + CuO \rightarrow N_2 + Cu + H_2O$. Here NH₃ is ammonia, CuO is copper oxide, Cu is copper, and N₂ is nitrogen.

is called the photosynthesis reaction— $C_6H_{12}O_6$ is glucose.

 $Pb(N_3)_2 + Cr(MnO_4)_2 \rightarrow Cr_2O_3 +$ Exercise 1.6.4 $MnO_2 + Pb_3O_4 + NO.$

Supplementary Exercises for Chapter 1

Exercise 1.1 We show in Chapter 4 that the graph of an equation ax + by + cz = d is a plane in space when not all of a, b, and c are zero.

- a. By examining the possible positions of planes in space, show that three equations in three variables can have zero, one, or infinitely many solutions.
- b. Can two equations in three variables have a unique solution? Give reasons for your answer.

Exercise 1.2 Find all solutions to the following systems of linear equations.

 $x_1 + x_2 + x_3 - x_4 = 3$ a. $3x_1 + 5x_2 - 2x_3 + x_4 = 1$ $-3x_1 - 7x_2 + 7x_3 - 5x_4 = 7$ $x_1 + 3x_2 - 4x_3 + 3x_4 = -5$

b.
$$x_1 + 4x_2 - x_3 + x_4 = 2$$

 $3x_1 + 2x_2 + x_3 + 2x_4 = 5$
 $x_1 - 6x_2 + 3x_3 = 1$
 $x_1 + 14x_2 - 5x_3 + 2x_4 = 3$

Exercise 1.3 In each case find (if possible) conditions on a, b, and c such that the system has zero, one, or infinitely many solutions.

a.
$$x + 2y - 4z = 4$$

 $3x - y + 13z = 2$
 $4x + y + a^2z = a + 3$
b. $x + y + 3z = a$
 $ax + y + 5z = 4$
 $x + ay + 4z = a$

Exercise 1.4 Show that any two rows of a matrix can be interchanged by elementary row transformations of the other two types.

Exercise 1.5 If $ad \neq bc$, show that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has reduced row-echelon form $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$.

Exercise 1.6 Find *a*, *b*, and *c* so that the system

$$x + ay + cz = 0$$

$$bx + cy - 3z = 1$$

$$ax + 2y + bz = 5$$

has the solution x = 3, y = -1, z = 2.

Exercise 1.7 Solve the system

x + 2y + 2z = -32x + y + z = -4x - y + iz = i

where $i^2 = -1$. [See Appendix A.]

Exercise 1.8 Show that the *real* system

$$\begin{cases} x + y + z = 5\\ 2x - y - z = 1\\ -3x + 2y + 2z = 0 \end{cases}$$

has a *complex* solution: x = 2, y = i, z = 3 - i where $i^2 = -1$. Explain. What happens when such a real system has a unique solution?

Exercise 1.9 A man is ordered by his doctor to take 5 **Exercise 1.11** units of vitamin A, 13 units of vitamin B, and 23 units of vitamin C each day. Three brands of vitamin pills are available, and the number of units of each vitamin per pill are shown in the accompanying table.

	Vitamin			
Brand	A	B	С	
1	1	2	4	
2	1	1	3	
3	0	1	1	

- a. Find all combinations of pills that provide exactly the required amount of vitamins (no partial pills allowed).
- b. If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢ per pill, respectively, find the least expensive treatment.

Exercise 1.10 A restaurant owner plans to use *x* tables seating 4, y tables seating 6, and z tables seating 8, for a total of 20 tables. When fully occupied, the tables seat 108 customers. If only half of the x tables, half of the y tables, and one-fourth of the z tables are used, each fully occupied, then 46 customers will be seated. Find x, y, and z.

a. Show that a matrix with two rows and two columns that is in reduced row-echelon form must have one of the following forms:

[1	0]	0	1]	[0	0]	[1]	*]
0	1	0	0	0	0	0	0

[Hint: The leading 1 in the first row must be in column 1 or 2 or not exist.]

- b. List the seven reduced row-echelon forms for matrices with two rows and three columns.
- c. List the four reduced row-echelon forms for matrices with three rows and two columns.

Exercise 1.12 An amusement park charges \$7 for adults, \$2 for youths, and \$0.50 for children. If 150 people enter and pay a total of \$100, find the numbers of adults, youths, and children. [Hint: These numbers are nonnegative *integers*.]

Exercise 1.13 Solve the following system of equations for x and y.

$$x^{2} + xy - y^{2} = 1$$

$$2x^{2} - xy + 3y^{2} = 13$$

$$x^{2} + 3xy + 2y^{2} = 0$$

[Hint: These equations are linear in the new variables $x_1 = x^2$, $x_2 = xy$, and $x_3 = y^2$.]